2005 UWEB Communications Workshop

Advanced Oral Presentation
Topics Continued
Jennifer Patterson
July 6, 2005
A Great Reference

- The Craft of Scientific Presentations: Critical Steps to Succeed and Critical Errors to Avoid by Michael Alley
 - Available as an electronic book through the UW library (search in catalog)
 - http://www.writing.eng.vt.edu/courses/presentations_workshop.html
 - More detail, example slides, templates
A sentence as a title on the slide will increase the power of the presentation

- Back up with images on body of slide and minimize bullet points
- Technical details
 - Make a statement, not just a phrase
 - Periods separate sentences in a paragraph so are not needed on slides
 - Left justify, only first letter capital
 - Keep to 2 lines
 - Choice of background design can be limiting - keep it simple
 - Put logo/design in lower right corner of slide

Concepts from Michael Alley’s Workshop on Technical Presentations
An example

Several mechanisms provide control of release from HA hydrogels, including...

Electrostatic interactions with negatively-charged HA

- Release into PBS, pH 7.4, at 37°C

Specific Aim 1: Preliminary Studies

<table>
<thead>
<tr>
<th>Protein</th>
<th>pI (calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPG</td>
<td>8.27</td>
</tr>
<tr>
<td>VEGF_{165}</td>
<td>7.29</td>
</tr>
<tr>
<td>BSA</td>
<td>5.75</td>
</tr>
</tbody>
</table>
For a longer presentation, consider a mapping slide instead of a bulleted outline

- Utilize images in conjunction with text to provide outline of talk
- Show connections between sections and overall flow of talk
An example of a mapping slide

This talk compares theory with measurements and gives the environmental implications

Theory for Hg cycling in Arctic springtime

Measurements from Zeppelin Air Monitoring Station

Environmental implications of AMDEs

**from http://www.writing.eng.vt.edu/me5984/samples/aspmo.pdf
Atmospheric Mercury Depletion Events (AMDEs) in Polar Regions During Arctic Spring

Katrine Aspmo
Norwegian Institute for Air Research

Grethe Wibetoe
University of Oslo, Dept. of Chemistry

June 16, 2004

from http://www.writing.eng.vt.edu/me5984/samples/aspmo.pdf
Using animations

- Slide Show → Custom Animation

Simple effects

- Delay appearance of an image or text
 - Bullet points appear one at a time
 - Don’t overuse!
Inserting Movies and Sound

- Insert → Movies and Sounds → Your choice
 - Make sure to use the right file format for movie
- Remember to copy movie/sound file along with PowerPoint file
- Test in advance on actual equipment
 - Are there speakers for sound files?
 - Know how to use the mouse
- Is movie/sound necessary and appropriate
 - Timelapse movies are most common for scientific presentations
More Complex Animations

- Using the drawing toolbar
- Hiding images
- Using the custom animation settings
 - Motion paths
2005 UWEB Communications Workshop

Writing a Scientific Research Article
Jennifer Patterson
July 6, 2005
The Scientific Paper

- Research articles
 - Most common type of publication
 - New discovery (focused study)

- Review paper
 - Summary of multiple works (key findings)
 - Intended to broadly educate/introduce to field

- Technical communications
 - Detailed description of novel methods
 - Generally lack scientific question
Objectives and Significance

- Dissemination of knowledge
- Transmit message to a broad audience
- Clarity, conciseness, accuracy
- Your contribution to your field
 - Establish your area of expertise
- Establish your reputation
 - Graduate school acceptance
 - Increased likelihood of funding
 - Tenure/job promotion
General Rules

- Only publish new material once
- Do not break up a single study into 2 papers
- Do not plagiarize
- Do not falsify data
- Use active rather than passive voice
- Use correct verb tense
 - Past tense for completed work
 - Present tense OK for introduction and discussion
Stages of Writing

1. Getting in the mood
2. Writing a first draft
3. Revising, revising, revising
4. Sending it out
Writing Strategy

- List the main ideas
- Outline the paper
 - Use subheadings in sections
- Fill in the information
 - Start with the easiest section first
 - Details of protocols and results
- Fine tune the writing
 - Grammar, spelling
- Smooth out the sections
 - Good transitions
Paper versus Presentation

Paper
1. Title
2. Abstract
3. Introduction
4. Materials & Methods
5. Results
6. Discussion (& Conclusion)
7. Acknowledgments

Presentation
1. Title
2. Introduction
3. Methods (& Materials)
4. Results & Discussion
5. Conclusion
6. Future Work
7. Acknowledgments
<table>
<thead>
<tr>
<th>Ordering of Appearance</th>
<th>Actual Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Title</td>
<td>1. Materials & Methods</td>
</tr>
<tr>
<td>2. Abstract</td>
<td>2. Results</td>
</tr>
<tr>
<td>3. Introduction</td>
<td>3. Discussion & Conclusion</td>
</tr>
<tr>
<td>5. Results</td>
<td>5. Acknowledgements</td>
</tr>
<tr>
<td>6. Discussion & Conclusion</td>
<td>6. Title</td>
</tr>
<tr>
<td>7. Acknowledgments</td>
<td>7. Abstract</td>
</tr>
</tbody>
</table>
Main Components of Paper

- **Introduction**
 - Start general and narrow to focus
 - Present relevant background material
 - State hypothesis and objectives of study

- **Main body**
 - Include methods and results
 - Clearly explain the data
 - Present the data and relate the main findings

- **Ending**
 - Repeat the main findings and relate to hypothesis
 - Discuss implications of work and future directions
 - End with conclusion and acknowledgments
Title

- Succinct and powerful
 - Delete unnecessary words

- Broad yet specific
 - Do not overstate but make it interesting

- Use keywords or buzzwords
 - Attracts interest
 - Comes up in database searches

- No abbreviations
 - Exception - very common words like DNA
Authors

- Include those who made significant contribution to the publication
 - This includes hypotheses and research direction!
- You are main author
 - Typically listed first
- Final author is PI
- Remaining authors are your mentor and other researchers in lab who contributed to the data
A model for studying epithelial attachment and morphology at the interface between skin and percutaneous devices

Negar G. Knowles¹, Yuko Miyashita¹, Marcia L. Usui¹, Andrew J. Marshall², Annalisa Pirrone¹, Kip D. Hauch³, Buddy D. Ratner²,³, Robert A. Underwood¹, Philip Fleckman¹, John E. Olerud¹*

¹Department of Medicine (Dermatology), University of Washington, Seattle, Washington

²Department of Chemical Engineering, University of Washington, Seattle, Washington

³Department of Bioengineering, University of Washington, Seattle, Washington

email: John E. Olerud (olerudje@uwashington.edu)

*Correspondence to John E. Olerud, University of Washington, Department of Medicine/Division of Dermatology, Box 356524, 1959 N. E. Pacific Street, Seattle, WA 98195-6524

From Journal of Biomedical Materials Research Part A
Abstract

- Summary of complete study
- Relatively short
 - 150-300 words
- Length and format dependent on journal
- Should stand alone
 - No references or figures
- Limit description of methods
 - 1-2 sentences
- Most important section
 - Most widely read, after title
 - Attracts audience
Introduction

- Background
 - General field, what has been done, rationale

- Objectives
 - Relevance of your project, hypothesis (purpose), what you have done

- Comparable to discussion
 - Try to capture reader’s attention
 - But don’t give everything away

- Judicious choice of references
 - Primary papers, not reviews
 - Most important work in field
Database Searching

- UW Databases
 - http://www.lib.washington.edu/types/databases/

- Medline

- Web of Science Citation Databases

What to search for

- Keywords
- Authors who are leaders in field
- Start with a paper you know

Cite the primary source

Cite important papers/review articles
Materials and Methods

- All elements of research used to produce results
 - So it can be repeated by others
 - Includes specific information
 - Model numbers for equipment
 - Vendor and location for materials

- Cite previously described methods
 - Include brief description
 - Reference the original appearance of method

- Include more details than for presentation
- Some journals have on-line supplements
Results

- Presentation of the data
 - Keep concise and clear
- Include data supporting hypothesis and aims
 - Most relevant information
- Include data to support everything mentioned in the discussion
- Present in logical order
 - Not necessarily chronological order
 - Order materials and methods the same way
 - Go back and characterize big discovery
Results Continued

- Results reported as both figures and text
- Specific mention of figures and tables
 - In order that they are referenced in text
 - Describe data in text and reference figure
 - “……... (Figure 1)”
- Judicious choice and arrangement of data
 - Limited space
- Present only analyzed data
- Do not provide interpretation in results section
 - Unless combined with discussion section
Discussion

- Interpretation of the results
 - Larger meaning of the work within context of study and previously published research

- Data are never “good” or “bad”
 - “Expected” or “unexpected”
 - Mention conflicting or negative results

- Use literature to broaden discussion
 - Compare results and conclusions
 - Be tactful
Discussion Continued

- Show your intelligence
 - Propose explanations for results
 - Display analytical skills
 - Show understanding of your project

- Be creative and imaginative
 - Potential implications of the results
 - Possible future work or directions

- Include conclusions within discussion section
 - Sub-section
Acknowledgments

- List those who helped
 - Helpful discussions
 - Technical assistance
 - Donated reagents

- Do not acknowledge other authors

- Include facilities used
 - UWEB, NESAC/BIO, etc.

- Funding sources
 - May be individual for some authors
 - Use NIH or NSF grant numbers
Great References

- Particularly for improving your overall scientific writing style
- The Craft of Scientific Writing by Michael Alley
- http://www.writing.eng.vt.edu/courses/writing_half_day.html
 - Avoiding errors of structure, language, and illustration