talking about why large companies like Boston Scientific collaborate with UWEB. Those with the “know-how” are the leading experts most often found in academic institutions.

The Pay-Off
Why so much attention to research? Namely, because it pays off. In 2001, U.S. biotech companies spent $15.7 billion on research and development. Quite an investment, and for good reason. Revenues increased from $8 billion in 1992 to $34.8 billion in 2001.

The recent economic downturn has meant company downsizing in the last couple of years. Yet, the good news is the continued need for advanced research. New drugs have helped 325 million people worldwide and 70% of them were developed in the last 10 years. With R&D such a necessary component of advances in industry, keeping companies competitive, there is no question about Ph.D. graduates’ role in industry. They provide much needed intellectual capital.

The Best Talent
What makes UWEB a leading research center and an ideal candidate for industrial projects? Leading experts at UWEB attract high-caliber students from around the world. When doctoral candidate Rachit Ohri was looking at programs six years ago from his home in India, he saw working with the faculty at UWEB as “a dream come true.” Ohri has already been involved with four invention disclosures, so he points to the newly launched industrial postdoctoral program as an opportunity for industry to harness potential. He means UWEB is a possible resource for Intellectual Property (IP), but also hopes companies will look at UWEB graduates as future employees.

Ohri works with a network of UWEB’s 30 faculty, 31 doctoral students and 25 postdoctoral candidates, all highly visible in research publications and meetings around the globe. Many of them, like postdoctoral scientist, Kathryn Kitching, are involved with industry. The Director of UWEB, Buddy Ratner, asked Kitching to work on a project for Genzyme Corporation because she had the expertise Genzyme needed. Kitching’s undergraduate degrees are in Chemistry and Toxicology, and her Ph.D. is concerned with the adsorption and characterization of biomolecules on surfaces. She came to UWEB from Liverpool, England where she completed a three-year post-doctoral experience in biomaterials and bioengineering. Kitching says doing “specialist research” and collaborating with a company on ideas is invaluable to a post-doctoral experience.

The value of industry-sponsored projects goes both ways. The UWEB Sponsors that participate in the Industrial Post-Doctoral Program will benefit from having dedicated post-docs to work on their projects, capturing valuable intellectual property (IP) for exclusive use in commercial applications. Not to mention the best benefit of all. The first member of their new project team is already in place if the project is implemented at the company. Employing a post-doc who has worked on a company project is an attractive offer for all involved.

Boston Scientific isn’t alone in taking advantage of collaborative research. The list of UWEB’s Consortium Members includes more than 20 companies. It’s the possible IP and prospective employee pool, Naimark admits, that make industrial projects at UWEB a worthwhile venture.

Why so much attention to research? Namely, because it pays off. In 2001, U.S. biotech companies spent $15.7 billion on research and development. Quite an investment, and for good reason. Revenues increased from $8 billion in 1992 to $34.8 billion in 2001.

The recent economic downturn has meant company downsizing in the last couple of years. Yet, the good news is the continued need for advanced research. New drugs have helped 325 million people worldwide and 70% of them were developed in the last 10 years. With R&D such a necessary component of advances in industry, keeping companies competitive, there is no question about Ph.D. graduates’ role in industry. They provide much needed intellectual capital.

The Best Talent
What makes UWEB a leading research center and an ideal candidate for industrial projects? Leading experts at UWEB attract high-caliber students from around the world. When doctoral candidate Rachit Ohri was looking at programs six years ago from his home in India, he saw working with the faculty at UWEB as “a dream come true.” Ohri has already been involved with four invention disclosures, so he points to the newly launched industrial postdoctoral program as an opportunity for industry to harness potential. He means UWEB is a possible resource for Intellectual Property (IP), but also hopes companies will look at UWEB graduates as future employees.

Ohri works with a network of UWEB’s 30 faculty, 31 doctoral students and 25 postdoctoral candidates, all highly visible in research publications and meetings around the globe. Many of them, like postdoctoral scientist, Kathryn Kitching, are involved with industry. The Director of UWEB, Buddy Ratner, asked Kitching to work on a project for Genzyme Corporation because she had the expertise Genzyme needed. Kitching’s undergraduate degrees are in Chemistry and Toxicology, and her Ph.D. is concerned with the adsorption and characterization of biomolecules on surfaces. She came to UWEB from Liverpool, England where she completed a three-year post-doctoral experience in biomaterials and bioengineering. Kitching says doing “specialist research” and collaborating with a company on ideas is invaluable to a post-doctoral experience.

The value of industry-sponsored projects goes both ways. The UWEB Sponsors that participate in the Industrial Post-Doctoral Program will benefit from having dedicated post-docs to work on their projects, capturing valuable intellectual property (IP) for exclusive use in commercial applications. Not to mention the best benefit of all. The first member of their new project team is already in place if the project is implemented at the company. Employing a post-doc who has worked on a company project is an attractive offer for all involved.

Boston Scientific isn’t alone in taking advantage of collaborative research. The list of UWEB’s Consortium Members includes more than 20 companies. It’s the possible IP and prospective employee pool, Naimark admits, that make industrial projects at UWEB a worthwhile venture.

The University of Washington Engineered Biomaterials (UWEB) knows industrial collaboration is essential. Academic research is important, but biomaterials need to be manufactured and produced. The need goes both ways. Industrial firms, even those with Research and Development (R&D) departments, are turning to centers like UWEB for solutions. Andy Branca, Director of Industry Relations at UWEB, recognizes that academic research is different from short-term, productivity-based industrial projects. He is working to bridge that gap by launching the seminal “Industrial Post-Doctoral Program” at UWEB.

Future Potential from front page

The New Industrial Post-Doctoral Program at UWEB

The Pay-Off
Why so much attention to research? Namely, because it pays off. In 2001, U.S. biotech companies spent $15.7 billion on research and development. Quite an investment, and for good reason. Revenues increased from $8 billion in 1992 to $34.8 billion in 2001.

The recent economic downturn has meant company downsizing in the last couple of years. Yet, the good news is the continued need for advanced research. New drugs have helped 325 million people worldwide and 70% of them were developed in the last 10 years. With R&D such a necessary component of advances in industry, keeping companies competitive, there is no question about Ph.D. graduates’ role in industry. They provide much needed intellectual capital.

The Best Talent
What makes UWEB a leading research center and an ideal candidate for industrial projects? Leading experts at UWEB attract high-caliber students from around the world. When doctoral candidate Rachit Ohri was looking at programs six years ago from his home in India, he saw working with the faculty at UWEB as “a dream come true.” Ohri has already been involved with four invention disclosures, so he points to the newly launched industrial postdoctoral program as an opportunity for industry to harness potential. He means UWEB is a possible resource for Intellectual Property (IP), but also hopes companies will look at UWEB graduates as future employees.

Ohri works with a network of UWEB’s 30 faculty, 31 doctoral students and 25 postdoctoral candidates, all highly visible in research publications and meetings around the globe. Many of them, like postdoctoral scientist, Kathryn Kitching, are involved with industry. The Director of UWEB, Buddy Ratner, asked Kitching to work on a project for Genzyme Corporation because she had the expertise Genzyme needed. Kitching’s undergraduate degrees are in Chemistry and Toxicology, and her Ph.D. is concerned with the adsorption and characterization of biomolecules on surfaces. She came to UWEB from Liverpool, England where she completed a three-year post-doctoral experience in biomaterials and bioengineering. Kitching says doing “specialist research” and collaborating with a company on ideas is invaluable to a post-doctoral experience.

The value of industry-sponsored projects goes both ways. The UWEB Sponsors that participate in the Industrial Post-Doctoral Program will benefit from having dedicated post-docs to work on their projects, capturing valuable intellectual property (IP) for exclusive use in commercial applications. Not to mention the best benefit of all. The first member of their new project team is already in place if the project is implemented at the company. Employing a post-doc who has worked on a company project is an attractive offer for all involved.

Boston Scientific isn’t alone in taking advantage of collaborative research. The list of UWEB’s Consortium Members includes more than 20 companies. It’s the possible IP and prospective employee pool, Naimark admits, that make industrial projects at UWEB a worthwhile venture.

The University of Washington Engineered Biomaterials (UWEB) knows industrial collaboration is essential. Academic research is important, but biomaterials need to be manufactured and produced. The need goes both ways. Industrial firms, even those with Research and Development (R&D) departments, are turning to centers like UWEB for solutions. Andy Branca, Director of Industry Relations at UWEB, recognizes that academic research is different from short-term, productivity-based industrial projects. He is working to bridge that gap by launching the seminal “Industrial Post-Doctoral Program” at UWEB.

How does the Industrial Post-Doctoral Program work?
Branca explains that a UWEB post-doctoral appointee will be dedicated to an industry-sponsored project for one to two years but in an academic environment. The post-doc will perform the research, coordinate with company personnel, and prepare the final report. In other words, it’s hands-on project management training. Branca worked as a Principal Scientist and Program Manager in the biotech industry for more than 9 years. This experience will give industrially-oriented candidates a chance to receive further training as technical project managers as well as scientists. Post-docs continue their scientific growth with world-class mentors at the University of Washington and receive direct exposure and training with industrial counterparts. Branca adds that this program is a prestigious gateway for post-docs in science and engineering who will be much more experienced and valuable to companies.

Those with the Know-How
Wendy Naimark, a Principal Research Scientist at Boston Scientific, says industrial projects often depend on “thought people” with “know-how expertise.” She’s
Message from the Director of Industry Relations

For more than six years, I have had the pleasure of working closely with the Consortium members and I look forward to our future collaboration with excitement and inspiration. I am especially interested in establishing working relationships with more of you. My contact database includes about 300 people in the Sponsor organizations. Here at the UW, we have nearly 100 people on the various UWEB payroll budgets. So, the whole enterprise we’ve created is definitely all about people, and that’s what I like most about UWEB!

As a National Science Foundation Engineering Research Center, UWEB’s goal is to integrate university research with commercial applications. As everyone knows, there is a substantial difference of directive in these disparate activities. Commercialization of advanced technology, especially in the Medical Device Industry occurs more incrementally than by the quantum leaps. Nevertheless, it is our commitment at UWEB to bridge the gap between the fundamental and the applied—between what exists today and what is possible tomorrow!

I like to view the Medical Device industry as a cup that is half-full of possibilities, as opposed to a sector already drained by limitations and problems. There are substantial opportunities here at UWEB for our Sponsors. Our dynamic research project portfolio is readily adaptable to fit your needs. Whatever the size or stage of your development programs, we are poised to help you find answers, troubleshoot, analyze materials and decipher complex biological responses.

Should you desire to pursue some of our patented inventions, or if you need some new IP created for your use, the Sponsors enjoy global exclusive access to technological advances at UWEB. I am pleased to invite all our UWEB Sponsors to reflect on how far we’ve come in recent years and to work together toward our mutual goals. This publication, The Insider, is created solely for - and is not distributed beyond - the UWEB Sponsorship. I hope you find it informative and that you are inspired to work with us.

Andy Branca, Ph.D.
UWEB Director Industry Relations
July 22, 2003
Invention I

Coupled Chemistry
Hydrogels Crosslinked with Amino Acids

UWEB Director, Buddy Ratner and visiting scientist, Prabha Nair, Chitra Tirunal Institute for Medical Sciences and Technology (India), discovered a powerful but simple combination: Mix solutions of (poly) vinyl alcohol (PVA) with amino acids and the two gel rapidly.

The surprise is this couple’s natural chemistry. There is no covalent chemical cross-linking or catalysis necessary to form it. This hydrogel is non-toxic, and therefore, highly biocompatible. Implanted into mice, there was no evidence of inflammation or extensive foreign body encapsulation (Fig. 1). Even more, this perfect combo has no competition. This is the first hydrogel found to form non-covalently on the basis of inherent intrinsic chemistry. It is a chemistry that is basic but unique. The amino acid can form hydrogen bounds with the hydroxyl (OH) groups on the PVA polymer. More specifically, Ratner and Nair found a 6.7% (wt/wt) solution of PVA (MW 86,000-140,000) had an approximate viscosity of 130 cps at 37º C, as measured by a spindle with a shear rate of 10 rpm. Add the amino acid, and the gel thickened in proportion to the amount of glycine in the amino acid.

Although any naturally occurring or synthetic amino acid can be used, the best hydrogels formed with PVA solutions were found to be glycine, bicine (N,N-Bis(2-hydroxyethyl)glycine, glutamine, cysteine, arginine, lysine, histidine, and trans-4-hydroxyl proline, serine, or methionine. A mixture of certain amino acids like glycine and lysine with PVA and glycine and arginine were also highly successful. Furthermore, UWEB scientist, Maxi Boeckl has shown that simple diaminoo or dicarboxylic acid compounds can be used.

These two United States Pharmacopeia (USP) certified raw materials that polymerize rapidly could have a significant impact on medical applications. PVA-amino acid hydrogels can be used in surgical sealants and barriers mimicking or working with fibrin to heal tissue. They could also be used as ultrasound coupling gels, lubricants, hemostasis control materials, medical device coatings, and to prevent adhesion after surgery. In the operating room, doctors could easily use this hydrogel to control the release of drugs and other therapeutic agents.

Figure 1
Biocompatibility Testing (Intra Muscular)
The hard outer layer of a lobster or shrimp is a lot like human bone. It’s hard and needs to be tough because it stands up to pressure. So, University of Washington researcher, Miqin Zhang, looked to Chitosan—a polymer that is a derivative of the crustacean shells—as a potential biomaterial for bone tissue engineering. What she found was even more impressive.

Mix chitosan with alginate, then freeze-dry them to separate and the resulting scaffold is full of holes. Literally. Yet, nine times as strong as chitosan alone. The porous structure, Zhang found, is ideal for healing bone lesions.

Zhang cut Chitosan-Alginate scaffolds she’d created into a coin-like shape. Then she seeded bone-forming cells into holes she’d made in the center of each scaffold. After only one week, Scanning Electron Microscope (SEM) images showed cells attached to the surface and bone nodules rooted to it, too, with many differentiated and divided cells.

This technology could replace the current scaffolds being made from softer materials as well as the more solid ceramic materials currently on the market. The porous structure of Chitosan/Alginate hybrids is ideal for seeding and growing bone cells. This biomaterial depends on holes to heal wholly.

Invention Disclosure II
All W-hole-d-Up:
Chitosan/Alginate Hybrid Heals Bone Faster

Figure 1
SEM photomicrographs of the cross sections of a chitosan-alginate scaffold prepared using a freeze-drying technique. (A) Three-dimensional porous structure. (B) A detailed pore image. (C) A higher magnification image showing interconnectivity of the porous structure.

Figure 2
SEM images of osteoblasts cultured on chitosan-alginate scaffolds after one week of cell culture. (A) Osteoblast cells attached to the surface by discrete filopodia and exhibited microvilli on its dorsal. (B) A group cells with many divided cells. (C) Several bone nodules grown on the surface. (D) A single nodule with many differentiated and divided cells.
Miqin Zhang is a bone architect. That is, she is in the business of designing the material equivalent of bone. A professor of Materials Science & Engineering at the University of Washington, Zhang has developed a method of preparing porous hydroxyapatite scaffolds using a combination of gel-casting and polymer sponge methods. The result is a lot like bone.

Bone is naturally porous to allow bone tissue to regenerate. However, high-impact fractures are very difficult to heal completely and take a long time. Not to mention that the loss of entire bone segments can’t be replaced. Bone tissue engineers have attempted to make next-generation bone equivalents that were mechanically as strong as bone while still maintaining bone’s cancellous structure, without much luck. That is, up to now.

Zhang’s technique achieves both the mechanical properties of bone and its architecture. Polymeric sponges are infiltrated with a ceramic slurry containing monomers and initiators for rapid gelation via \textit{in situ} polymerization. The process produces an open, uniform and interconnected porous structure with a pore size of 200-400 µm, a compressive yield strength of ~5 MPa, and a compressive modulus of ~8 GPa. These figures are relative to the polymer sponges used. Alternating appropriately structured sponges, Zhang’s method can control porosity, pore size, and the geometry of the synthetic tissue. It’s just a matter of design.
Invention Disclosure

For the past six years, UWEB has disclosed a wide variety of inventions exclusively to UWEB Sponsors. If you have interest in discussing any of the titles in the list below, please contact Dr. Andy Branca, UWEB Director of Industry Relations.

Inventions:
• A Biodegradable, biocompatible polyurethane based on peptide segments
• A Biomaterials Treatment for Cancer
• A Method of Preventing Endothelial Cell Death in Angiogenic Biomaterials, Pending
• A New Technique for Fabrication of Macroporous Hydrogels
• A Novel Cationization Surface for SIMS Analysis of Polymers and other Macromolecules
• A Strategy to Enhance the Healing of Biomaterials, Pending
• A Tissue Engineered Heart Valve
• A tissue engineered small-diameter vascular graft, Pending
• A Tissue-engineered Heart Muscle Construct
• An SHA Self-assembled Monolayer Surface for Immobilizing Proteins and Biomolecules
• Angiogenic Biomaterials, Pending
• Biomaterial with Engineered Vascularization, Issued
• Cell Attachment Interface for Transcutaneous Devices
• Chitosan/Alginate hybrid scaffolds for bone tissue engineering
• Covalent Immobilization of Proteins and Peptides on Bioprosthetic Heart Valve Tissue
• Degradable Microvessells for Biomaterial Surfaces
• Fluorescent Porphyrins for Self Assembled Monolayers on Gold Surfaces
• Fluorocarbon Surfaces that Promote Cell Growth
• Hydrogels formed by Crosslinking with Amino Acids, Pending
• Immobilized Osteopontin for Healing of Implanted Biomaterials, Pending
• Improved Wound-Healing and Alteration of the Foreign Body Reaction Achieved by Local Inhibition of Expression of Thrombospondin 2 (TSP2), Pending
• Lubricious Coating by Plasma Polymerization
• Method to Enhance Cell Proliferation
• Mitigation of Bioprosthetic Heart Valve Calcification by Treatment with Sodium Cyanoborohydride at PH = 9.5
• New Cross-linkable Phospholipids for the Preparation of Supported Bilayers
• Novel Manufacturing Designs to Achieve Spatial and Temporal Control and Local Biologies Delivery
• Photoimmobilization of Osteopontin on Implant Surfaces
• Photosensitive Self-assembled Monolayers with Azide Head Groups: an Easy route for Modification of Surfaces, Pending
• Plasma polymerized temperature responsive polymer coatings with microheater control for protein and cell patterning
• Porous Biodegradable Scaffolds Based on Amino Acids for Tissue Engineering, Pending
• Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods, Pending
• Prevention of Ectopic Calcification of Bioprosthetic Valve Material by Using Reducing Agents (such as Glutathione and Vitamin C
• Purification of Thiol Molecule Using Gold
• Recognition Peptides Engineered into Streptavidin, Pending
• Reduced Foreign Body Giant Cell Formation in MCP-1 Mice, Pending
• Separation of Mixed Cell Populations
• Skinny Electrodes for Improved Healing
• Small Fiber Biomaterials, Pending
• Surface Immobilization of Alpha Tocopherol Succinate (Vitamin E) for Reducing Macrophage Mediated Inflammatory Response to Biomaterial Implants
• Synthesis of a Peptide Crosslinker
• Synthesis of Activated Carboxyl Nano Gold Particles
• Template Imprinted Materials by RFGD Plasma Deposition, Issued
• Therapeutic Delivery Using Biological Microtubes
• Type-1 Collagen Coating for the Natural Immobilization of Osteopontin
• Ultrasound Modulated Self-healing SAM-polymer Implants for Controlled Drug-delivery, Issued
• Use of b-sheet Motifs as Tensile Molecular Recognition Switches
• Use of Osteopontin to Inhibit Tissue and Implant Calcification, Issued
• Use of Phosphonoformic Acid (Tradename Foscarnet) to Treat Ectopic Calcification of Uremic Patients
Publications in Peer Reviewed Technical Journals

See Technical Journal Publications page 8

Publications in Peer Reviewed Conference Proceedings

“Natural Immobilization: The Use of Type 1 Collagen as a Natural Binding Agent of Osteopontin onto Poly(2-hydroxyethyl methacrylate) and its in vitro Effects,” Stephanie M. Martin, Jeffrey L. Schwartz, Cecilia M. Giachelli, Buddy D. Ratner. The 29th Annual Meeting of the Society for Biomaterials (abstract accepted), Reno, NV, April 30-May 3, 2003.

Affinity Coating to Bind Osteopontin to Poly(2 hydroxyethyl methacrylate),” Stephanie M. Martin, Jeffrey L. Schwartz, Cecilia M. Giachelli, Buddy D. Ratner. Polymer Preprints 2003, 44(1).

R Ohri, CM Giachelli “Mitigating Dystrophic Calcification of Bovine Pericardium by Osteopontin (Rescuing the Calcification Phenotype in Osteopontin-Null Mice),” Transactions of the Society for Biomaterials, 25, 199, 2002.

Publications in Trade Journals

Message from the Director of Industry Relations

For more than six years, I have had the pleasure of working closely with the Consortium members and I look forward to our future collaboration with excitement and inspiration. I am especially interested in establishing working relationships with more of you. My contact database includes about 300 people in the Sponsor organizations. Here at the UWEB, we have nearly 100 people on the various UWEB payroll budgets. So, the whole enterprise we’ve created is definitely all about people, and that’s what I like most about UWEB!

As a National Science Foundation Engineering Research Center, UWEB’s goal is to integrate university research with commercial applications. As everyone knows, there is a substantial difference of directive in these disparate activities. Commercialization of advanced technology, especially in the Medical Device Industry occurs more incrementally than by the quantum leaps. Nevertheless, it is our commitment at UWEB to bridge the gap between the fundamental and the applied—between what exists today and what is possible tomorrow!

I like to view the Medical Device industry as a cup that is half-full of possibilities, as opposed to a sector already drained by limitations and problems. There are substantial opportunities here at UWEB for our Sponsors. Our dynamic research project portfolio is readily adaptable to fit your needs. Whatever the size or stage of your development programs, we are poised to help you find answers, troubleshoot, analyze materials and decipher complex biological responses.

Should you desire to pursue some of our patented inventions, or if you need some new IP created for your use, the Sponsors enjoy global exclusive access to technological advances at UWEB.

I am pleased to invite all our UWEB Sponsors to reflect on how far we’ve come in recent years and to work together toward our mutual goals. This publication, The Insider, is created solely for - and is not distributed beyond - the UWEB Sponsorship. I hope you find it informative and that you are inspired to work with us.

Andy Branca, Ph.D.
UWEB Director Industry Relations
July 22, 2003

Table of Contents

Feature story: Future Potential1
Director of Industry’s message2
Technology Alerts ..3-5
Invention I: Coupled Chemistry3
Invention II: All W-hole-d Up4
Invention II: Designing Bones5
Lists of inventions ...7
List of publications ...8-11

Produced by University of Washington Engineered Biomaterials (UWEB)
Box 351720
Seattle, WA 98195-1720
Tel: 206.616.3704
Fax: 206.616.9763
http://www.uweb.engr.washington.edu/
info@uweb.engr.washington.edu

Buddy Ratner, Ph.D.
UWEB Director

Andy Branca, Ph.D.
UWEB Director of Industry Relations

Shari Ireton and Elizabeth Sharpe
Managing Editors

From Trade Journal Publications page 10

Congratulations Alcon!

UWEB congratulates Alcon Laboratories of Fort Worth, TX on the recent FDA approval of its AcrySof® Natural Single-Piece Intraocular Lens. Alcon, a founding member of UWEB, specializes in products for vision correction, care and the treatment of diseases of the eye. The new IOL is the first foldable implanted lens that can filter out harmful UV and blue-light (on the market in the US.) It is designed to mimic the light-filtering properties of a healthy human lens. This design incorporates chromophores into the acrylate lens material that selectively filters out high-energy light. The product was introduced less than a year ago in Europe and is now available for lens replacement in the US.

UWEB is proud to work closely with its industry partners like Alcon that continue to improve medical devices, benefitting patients world-wide.

Good job, Alcon, and best wishes from your colleagues at UWEB.
Future Potential from front page

The Pay-Off

Why so much attention to research? Namely, because it pays off. In 2001, U.S. biotech companies spent $15.7 billion on research and development. Quite an investment, and for good reason. Revenues increased from $8 billion in 1992 to $34.8 billion in 2001.

The recent economic downturn has meant company downsizing in the last couple of years. Yet, the good news is the continued need for advanced research. New drugs have helped 325 million people worldwide and 70% of them were developed in the last 10 years. With R&D such a necessary component of advances in industry, keeping companies competitive, there is no question about Ph.D. graduates’ role in industry. They provide much needed intellectual capital.

The Best Talent

What makes UWEB a leading research center and an ideal candidate for industrial projects? Leading experts at UWEB attract high-caliber students from around the world. When doctoral candidate Rachit Ohri was looking at programs six years ago from his home in India, he saw working with the faculty at UWEB as “a dream come true.” Ohri has already been involved with four invention disclosures, so he points to the newly launched industrial postdoctoral program as an opportunity for industry to harness potential. He means UWEB as a possible resource for Intellectual Property (IP), but also hopes companies will look at UWEB graduates as future employees.

Ohri works with a network of UWEB’s 30 faculty, 31 doctoral students and 25 postdoctoral candidates, all highly visible in research publications and meetings around the globe. Many of them, like post-doctoral scientist, Kathryn Kitching, are involved with industry. The Director of UWEB, Buddy Ratner, asked Kitching to work on a project for Genzyme Corporation because she had the expertise Genzyme needed. Kitching’s undergraduate degrees are in Chemistry and Toxicology, and her Ph.D. is concerned with the adsorption and characterization of biomolecules on surfaces. She came to UWEB from Liverpool, England where she completed a three-year post-doctoral experience in biomaterials and bioengineering. Kitching says doing “specialist research” and collaborating with a company on ideas is invaluable to a post-doctoral experience.

The value of industry-sponsored projects goes both ways. The UWEB Sponsors that participate in the Industrial Post-Doctoral Program will benefit from having dedicated post-docs to work on their projects, capturing valuable intellectual property (IP) for exclusive use in commercial applications. Not to mention the best benefit of all. The first member of their new project team is already in place if the project is implemented at the company. Employing a post-doc who has worked on a company project is an attractive offer for all involved.

Boston Scientific isn’t alone in taking advantage of industrial projects for one to two years but in an academic environment. The need goes both ways. Industrial firms, even those with Research and Development (R&D) departments, are turning to centers like UWEB for solutions. Andy Branca, Director of Industry Relations at UWEB, recognizes that academic research is different from short-term, productivity-based industrial projects. He is working to bridge that gap by launching the seminal “Industrial Post-Doctoral Program” at UWEB.

How does the Industrial Post-Doctoral Program work?

Branca explains that a UWEB post-doctoral appointee will be dedicated to an industry-sponsored project for one to two years but in an academic environment. The post-doc will perform the research, coordinate with company personnel, and prepare the final report. In other words, it’s hands-on project management training. Branca worked as a Principal Scientist and Program Manager in the biotech industry for more than 9 years. This experience will give industrially-oriented candidates a chance to receive further training as technical project managers as well as scientists. Post-docs continue their scientific growth with world-class mentors at the University of Washington and receive direct exposure and training with industrial counterparts. Branca adds that this program is a prestigious gateway for post-docs in science and engineering who will be much more experienced and valuable to companies.

Those with the Know-How

Wendy Naimark, a Principal Research Scientist at Boston Scientific, says industrial projects often depend on “thought people” with “know-how expertise.” She’s